整个业务中,各个本地事务是有关联的。因此每个微服务的本地事务,也可以称为分支事务。多个有关联的分支事务一起就组成了全局事务。我们必须保证整个全局事务同时成功或失败。
每一个分支事务就是传统的单体事务,都可以满足ACID特性,但全局事务跨越多个服务、多个数据库,不一定能满足。比如整个交易服务,在创建订单时商品还有货,但是在扣减库存这一步发现没有货了,最终因库存不足导致下单失败,但是购物车数据依然被清空了,并未回滚。
显然事务并未遵循ACID的原则,归其原因就是参与事务的多个子业务在不同的微服务,跨越了不同的数据库。虽然每个单独的业务都能在本地遵循ACID,但是它们互相之间没有感知,不知道有分支服务失败,无法保证最终结果的统一,也就无法遵循ACID的事务特性了。
这就是分布式事务问题,出现以下情况之一就可能产生分布式事务问题:
- 业务跨多个服务实现
- 业务跨多个数据源实现
认识Seata
解决分布式事务的方案有很多,在众多的开源分布式事务框架中,功能最完善、使用最多的就是阿里巴巴在2019年开源的Seata。
官方网站:https://seata.io/zh-cn/docs/overview/what-is-seata.html
其实分布式事务产生的一个重要原因,就是参与事务的多个分支事务互相无感知,不知道彼此的执行状态。因此解决分布式事务的思想非常简单:
就是找一个统一的事务协调者,与多个分支事务通信,检测每个分支事务的执行状态,保证全局事务下的每一个分支事务同时成功或失败即可。大多数的分布式事务框架都是基于这个理论来实现的。
Seata也不例外,在Seata的事务管理中有三个重要的角色:
- TC (Transaction Coordinator) –事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
- TM (Transaction Manager) –事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
- RM (Resource Manager) –资源管理器:管理分支事务,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata的工作架构如图所示:
其中,TM和RM可以理解为Seata的客户端部分,引入到参与事务的微服务依赖中即可。将来TM和RM就会协助微服务,实现本地分支事务与TC之间交互,实现事务的提交或回滚。而TC服务则是事务协调中心,是一个独立的微服务,需要单独部署。
配置部署Seata过程略。
微服务继承Seata
引入依赖
为了方便各个微服务集成seata,我们需要把seata配置共享到nacos,因此trade-service
模块不仅仅要引入seata依赖,还要引入nacos依赖:
<!--统一配置管理-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>
<!--读取bootstrap文件-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-bootstrap</artifactId>
</dependency>
<!--seata-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-seata</artifactId>
</dependency>
改造配置
首先在nacos上添加一个共享的seata配置,命名为shared-seata.yaml
:
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 你的IP地址:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-server # seata服务名称
username: nacos
password: nacos
tx-service-group: hmall # 事务组名称
service:
vgroup-mapping: # 事务组与tc集群的映射关系
hmall: "default"
data-source-proxy-mode: AT
然后,改造trade-service
模块,添加bootstrap.yaml
:
内容如下:
spring:
application:
name: trade-service # 服务名称
profiles:
active: dev
cloud:
nacos:
server-addr: 192.168.150.101 # nacos地址
config:
file-extension: yaml # 文件后缀名
shared-configs: # 共享配置
- dataId: shared-jdbc.yaml # 共享mybatis配置
- dataId: shared-log.yaml # 共享日志配置
- dataId: shared-swagger.yaml # 共享日志配置
- dataId: shared-seata.yaml # 共享seata配置
可以看到这里加载了共享的seata配置。
然后改造application.yaml文件,内容如下:
server:
port: 8085
feign:
okhttp:
enabled: true # 开启OKHttp连接池支持
sentinel:
enabled: true # 开启Feign对Sentinel的整合
hm:
swagger:
title: 交易服务接口文档
package: com.hmall.trade.controller
db:
database: hm-trade
添加数据库表
seata的客户端在解决分布式事务的时候需要记录一些中间数据,保存在数据库中,建立一张表即可。
官方sql脚本:https://github.com/apache/incubator-seata/tree/2.x/script/client/at/db。这里使用MySQL的。
-- for AT mode you must to init this sql for you business database. the seata server not need it.
CREATE TABLE IF NOT EXISTS `undo_log`
(
`branch_id` BIGINT NOT NULL COMMENT 'branch transaction id',
`xid` VARCHAR(128) NOT NULL COMMENT 'global transaction id',
`context` VARCHAR(128) NOT NULL COMMENT 'undo_log context,such as serialization',
`rollback_info` LONGBLOB NOT NULL COMMENT 'rollback info',
`log_status` INT(11) NOT NULL COMMENT '0:normal status,1:defense status',
`log_created` DATETIME(6) NOT NULL COMMENT 'create datetime',
`log_modified` DATETIME(6) NOT NULL COMMENT 'modify datetime',
UNIQUE KEY `ux_undo_log` (`xid`, `branch_id`)
) ENGINE = InnoDB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8mb4 COMMENT ='AT transaction mode undo table';
ALTER TABLE `undo_log` ADD INDEX `ix_log_created` (`log_created`);
测试
接下来就是测试的分布式事务的时候了。
我们找到trade-service
模块下的com.hmall.trade.service.impl.OrderServiceImpl
类中的createOrder
方法,也就是下单业务方法。
将其上的@Transactional
注解改为Seata提供的@GlobalTransactional
:
@GlobalTransactional
注解就是在标记事务的起点,将来TM就会基于这个方法判断全局事务范围,初始化全局事务。
XA模式
Seata支持四种不同的分布式事务解决方案:
- XA
- TCC
- AT
- SAGA
这里以XA
模式和AT
模式为主,介绍其实现原理。
XA
规范 是 X/Open
组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM
与局部的RM
之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
两阶段提交
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
正常情况:
异常情况:
一阶段:
- 事务协调者通知每个事务参与者执行本地事务
- 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁
二阶段:
- 事务协调者基于一阶段的报告来判断下一步操作
- 如果一阶段都成功,则通知所有事务参与者,提交事务
- 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务
Seata的XA模型
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM
一阶段的工作:
- 注册分支事务到
TC
- 执行分支业务sql但不提交
- 报告执行状态到
TC
TC
二阶段的工作:
TC
检测各分支事务执行状态- 如果都成功,通知所有RM提交事务
- 如果有失败,通知所有RM回滚事务
RM
二阶段的工作:
- 接收
TC
指令,提交或回滚事务
优缺点
XA
模式的优点是什么?
- 事务的强一致性,满足ACID原则
- 常用数据库都支持,实现简单,并且没有代码侵入
XA
模式的缺点是什么?
- 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
- 依赖关系型数据库实现事务
实现步骤
首先在配置文件中指定要采用的分布式事务模式。在Nacos中的共享shared-seata.yaml配置文件中设置:
seata:
data-source-proxy-mode: XA
其次,利用@GlobalTransactional
标记分布式事务的入口方法:
AT模式
AT
模式同样是分阶段提交的事务模型,不过缺弥补了XA
模型中资源锁定周期过长的缺陷。
Seata的AT模型
基本流程图:
阶段一RM
的工作:
- 注册分支事务
- 记录undo-log(数据快照)
- 执行业务sql并提交
- 报告事务状态
阶段二提交时RM
的工作:
- 删除undo-log即可
阶段二回滚时RM
的工作:
- 根据undo-log恢复数据到更新前
流程梳理
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在有一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
一阶段:
TM
发起并注册全局事务到TC
TM
调用分支事务- 分支事务准备执行业务SQL
RM
拦截业务SQL,根据where条件查询原始数据,形成快照。
{
"id": 1, "money": 100
}
RM
执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90RM
报告本地事务状态给TC
二阶段:
TM
通知TC
事务结束TC
检查分支事务状态- 如果都成功,则立即删除快照
- 如果有分支事务失败,需要回滚。读取快照数据({“id”: 1, “money”: 100}),将快照恢复到数据库。此时数据库再次恢复为100
流程图:
AT与XA的区别
简述AT
模式与XA
模式最大的区别是什么?
XA
模式一阶段不提交事务,锁定资源;AT
模式一阶段直接提交,不锁定资源。XA
模式依赖数据库机制实现回滚;AT
模式利用数据快照实现数据回滚。XA
模式强一致;AT
模式最终一致
可见,AT模式使用起来更加简单,无业务侵入,性能更好。因此企业90%的分布式事务都可以用AT模式来解决。